人工智能最新研究:科学家研发出具有类似人类系统泛化能力神经网络

发布时间:2025-01-05 22:49:12 来源: sp20250105

   中新网 北京10月26日电 (记者 孙自法)人工智能(AI)能像人类一样思考吗?国际著名学术期刊《自然》最新发表一篇计算机科学论文称,研究人员研发出一个具有类似人类系统泛化(systematic generalization)能力的神经网络,系统泛化能力是指学习新概念并将之与已有概念相结合的能力。

人类比机器更擅长综合泛化。如果一个人知道呼啦圈、杂耍和滑板的含义,他们就能理解将三者结合在一起的含义。这篇论文展示了机器如何提高这种能力并模拟人类行为(图片来自论文)。施普林格·自然  供图

  这项研究结果挑战了一个已存在35年的观点——即神经网络不是人脑的可行模型,因为它们缺乏系统泛化的能力。论文作者使用的方法或能用于开发行为上更像人类的人工智能系统。

利用综合性元学习让神经网络获得综合泛化能力的模型(图片来自论文)。施普林格·自然  供图

  该论文介绍,人类能学习新概念,如跳跃,并将之应用到其他情景中,如向后跳或跳过障碍物,这种将新老概念结合的能力也被称为系统泛化。1988年,研究人员提出人工网络缺少这种能力,所以不能作为人类认知的可靠模型。虽然神经网络在后来几十年里取得了重大进展,但仍很难证明其具有系统泛化的能力。

利用综合性元学习让神经网络获得综合泛化能力的模型(图片来自论文)。施普林格·自然  供图

  论文第一作者兼通讯作者、美国纽约大学Brenden Lake和西班牙庞培法布拉大学Marco Baroni合作,用证据表明神经网络能掌握与人类相似的系统泛化能力。他们使用一种元学习方法优化组织能力(按逻辑顺序组织概念的能力),该系统能在动态变化的不同任务中学习,而不是只在静态数据集上优化(即之前的标准方法)。通过并行比较人类与神经网络,他们评估了系统泛化能力测试的结果,测试要求学习伪造词的意思,并推测这些词之间的语法关系。研究结果表明,该神经网络能掌握、有时甚至能超过类似人类的系统泛化能力。

人类与综合性元学习模型在同一个任务上的对比(图片来自论文)。施普林格·自然  供图

  论文作者总结认为,虽然元学习方法无法让该神经网络对训练之外的任务进行泛化,但他们的研究结果有助于今后开发出行为更像人类大脑的人工智能。(完)

【编辑:钱姣姣】
选择用户
全部人员 全选 撤消
谢志刚
李岩
李海涛
谢志强
李亚琴
潘潇潇
杨亚男
高荣新
郑文静
金琳
张银波
张欣
陈曦
刘涛
王长青
高广柱
孙圆
行政专员
付雪枫
张雪莲
张璐
刘相群
张明璇
李静
孙静
王晨
赵夏
马洪亮
张兰
黄莉
李潍伊
常恩宁
侯昭宇
韩岩峰
冯亚红
林洋
陈静
刘婧
魏保国
唐彦秀
张楠
刘瑞萍
付严明
荣伶
马建国
邓爱青
系统管理员