智能系统高效识别铁路货车故障

发布时间:2025-01-08 13:39:53 来源: sp20250108

原标题:智能系统高效识别铁路货车故障

科技日报讯 (刘侠 记者滕继濮 通讯员左荣敏)记者近日从中国铁路成都局集团有限公司成都北车辆段(以下简称“成都北车辆段”)获悉,该段已引入TFDS(货车故障轨旁图像检测系统)故障智能识别系统,用于铁路货车检测。系统上线运营后,人工作业量缩减近90%,故障识别率提升近40%,检测上万个零部件的时间只需3—5分钟。

以往,TFDS的动态检查工作完全依赖人工执行。每当铁路货车经过TFDS探测站时,电子摄像设备会迅速捕捉并上传车底配件及车体侧部的动态图像至TFDS服务器。随后由专业的TFDS动态检车员对每一张图像进行分析,发现潜在的车辆故障。据悉,成都北车辆段的TFDS动态检车员每日需审阅的车辆图片数量高达150余万张。

为了有效减轻作业人员的工作负担,进一步提升列车技术检查的效率与质量,成都北车辆段决定引入TFDS故障智能识别系统。对此,成都北车辆段数字运维车间技术员贾明勇说:“与以往‘大海捞针’式的检查方式不同,现在我们只需对经过AI算法精确识别后推送的故障进行复核即可。”该系统的使用,使得每位检车员每列车图片的分析量从原先的600余幅锐减至100幅,工作量减少了近90%。同时,每列车的平均技术检查时间也从15分钟缩短至8分钟。

据介绍,该系统采用了目前业界最大的视野预训练模型“盘古大模型”,可自动学习货运系统内各类货车故障图片样本,对货车故障实现自动识别、自动总结部件特征、自动寻找故障规律。

(责编:罗知之、陈键)
选择用户
全部人员 全选 撤消
谢志刚
李岩
李海涛
谢志强
李亚琴
潘潇潇
杨亚男
高荣新
郑文静
金琳
张银波
张欣
陈曦
刘涛
王长青
高广柱
孙圆
行政专员
付雪枫
张雪莲
张璐
刘相群
张明璇
李静
孙静
王晨
赵夏
马洪亮
张兰
黄莉
李潍伊
常恩宁
侯昭宇
韩岩峰
冯亚红
林洋
陈静
刘婧
魏保国
唐彦秀
张楠
刘瑞萍
付严明
荣伶
马建国
邓爱青
系统管理员