让更多知识被看见:信息过载环境下算法的高效推荐实践

发布时间:2024-11-17 13:42:19 来源: sp20241117

  如今是一个“信息过载”的时代。

  人工智能时代的数字基础设施,具有强大且低成本的数据收集能力,使我们拥有了比以往任何时候都多的信息。

  美国加州大学伯克利分校的一项研究这样阐释“信息大爆炸”这一概念:仅仅花了16年,人类生产的数字信息量就相当于人类历史上积累信息的总和。信息增加的速度仍在飞速增长,2025年人类社会新产生的数据将达到175万亿GB。

  美国学者格罗斯在其1964年的《组织管理》一书中提出了“信息过载”概念:“当决策者面临的信息水平超过他们的信息处理能力时,就会发生信息过载,从而导致决策质量下降。”经过未来学家托夫勒的经典著作《未来的冲击》的引用,“信息过载”已经广为大众所熟知。

  信息过载的产生来自于人脑机制。人脑的信息处理能力是有限的。大脑每天负责处理人在工作、学习、娱乐中收集的信息,当同时有过多的信息需要处理,达到信息瘫痪的临界点,大脑就难以继续处理信息和采取行动,从而发生认知过载。

  面对浩如烟海的信息,各种解决方法应运而生。分类法是最早的尝试之一,从书籍的中国图书馆分类法到雅虎早期的内容分类目录,再到腾讯首页的各类板块划分,都是为了让人们在海量信息中找到方向。但很快人们发现,即使有了分类,信息仍然严重过载,以至于为每一个物品赋予类别都变得极为困难,展示分类索引或目录也成了难题。

  这时,搜索引擎登上了历史舞台。

  如今,推荐算法已经解决信息过载的常见解决方案。优秀的推荐算法可以根据用户的个人品味、兴趣偏好进行精准有效分发,把人与信息更高效地连接起来,在浩瀚的信息海洋中,精准的筛选出个体所需要的内容并进行推荐。

  在这里一过程中,推荐算法不只解决了信息筛选问题,还使得一些原本小众、从数量上并不占优势的优质内容得以被发掘出来,并被推送到真正需要的人面前。

  短视频上的知识类短视频便是一个很好的例子。在推荐算法的加持下,很多冷门小众的知识视频开始受到用户欢迎,众多小众知识凭借全新的表现形式和算法的技术优势,被越来越多的网友看到、关注和喜爱。

  昔日的“冷门绝学”甲骨文专业在抖音翻红,80万网友在科普作者@李右溪的账号里研究甲骨文;社科院考古研究所研究员许宏化身“公众考古第一人”,成功把考古学带出圈;娃娃脸博导用短视频科普“高冷”星际化学,带领网友们用新视角仰望星空。此外还有弦理论、哲学、量子隧穿、真空灾变……

  各类冷门知识内容在短视频遍地开花,备受大众欢迎,引发网友追更,成为帮助用户了解小众内容和冷门知识的一把钥匙。

  这背后正是推荐算法的精准有效分发,让冷门小众的内容被有需要的、感兴趣的人看到。也正因为推荐算法,信息流动速度更快,信息找人更精准,让这些冷门却有价值的内容获得了更多流量,实现了自身价值的最大化。

  同时,算法推荐也解决了“信息过载”环境下,知识如何高效流动的问题。这些曾经难以进入大众化视野的专业甚至冷门艰深的知识内容,以及日常的生活经验,都在高效的个性化推荐传播中获得广泛的受众,最终短视频成为了信息过载时代里一座“没有围墙的大学”。

  在平台和高校的推动下,这所大学中的内容还在日益丰富多元。就在今年9月开学季,除了各大高校陆续返校的在校生外,还有一群云旁听生正蓄势待发。

  近年来,顶尖高校纷纷组团在抖音营业,开设公开课直播,院士、教授、高校教授纷纷开讲,拆除教育门槛,将知识输送到更远更隐秘的角落,流向了更多更需要它的人群。5年前,北大官方抖音账号正式开始运营。目前,北大的抖音号已拥有超800万粉丝,更有千万人在线“选修”过北大的公开课。

  《2023抖音公开课学习数据报告》显示,全国147所双一流名校中,有137所入驻抖音平台,覆盖率达93.2%。有400位教授、45位院士、4位诺奖得主在抖音传递知识,其中,北京大学、清华大学、中国科学院大学位列抖音网友最喜欢的授课高校前三名。

  在抖音,平均每天有超20万人次在观看高校直播课。通过观看抖音公开课,人们可以自由选择自己感兴趣的内容,享受顶级名校和一流名师的教育。

  近年来,科普已经日益成为全民科学素质提升的重要手段。目前摆在科普工作和相关人士面前的一大课题是,如何进一步打造泛精准信息化科普服务平台,通过创新发展现代科技馆体系、提升科普信息化水平、推进科幻产业发展等举措,更加丰富完善科普的内容与形式,实现科普资源数量和质量的共同提升,以科普现代化助推全民科学素质提升。

  优质的推荐算法正是其中不可或缺的一环。对网友、用户来说,推荐算法帮助提高获取知识内容效率,拓展多元接收渠道和灵活的学习方式,调动年轻人的科学兴趣和学习积极性,进而增强他们的科研活力和创新潜力,经常有网友评论“知识以意想不到的方式进入脑子”“妈妈我出息了,我在抖音上大学”。

  对高校、教育、创作者来说,推荐算法拓展了学习群体,研究成果、观点等找到更多观众,分享给更多人。知识的传播不再是单向输出,在推荐算法的连接下,在互动中形成了知识共享,促进了知识的高效流动,原本可能深藏于学术殿堂的科普内容,被推送给了更多需要它的用户。这种个性化、高效能的分发模式,极大地降低了知识获取的门槛,使得院士、教授、学霸们的专业知识能够跨越职业的界限,触达并惠及更广泛的人群,为提升全民科学素养贡献力量。 【编辑:刘阳禾】

选择用户
全部人员 全选 撤消
谢志刚
李岩
李海涛
谢志强
李亚琴
潘潇潇
杨亚男
高荣新
郑文静
金琳
张银波
张欣
陈曦
刘涛
王长青
高广柱
孙圆
行政专员
付雪枫
张雪莲
张璐
刘相群
张明璇
李静
孙静
王晨
赵夏
马洪亮
张兰
黄莉
李潍伊
常恩宁
侯昭宇
韩岩峰
冯亚红
林洋
陈静
刘婧
魏保国
唐彦秀
张楠
刘瑞萍
付严明
荣伶
马建国
邓爱青
系统管理员